In the bar graph plots, not only is the comparison data between samples more evident, but the change between the same samples at different intervals is significantly more apparent. While the argument could be made that labeling the data on the pie chart could alleviate some of the confusion between the different charts, that is beyond the point of the argument. The argument is that there are significantly better ways of plotting comparative or time series data that can paint a more clear and concise visual representation than a pie chart.
Data Resolution
While plotting data against time is critical for understanding trends, time intervals can often be misrepresented. Condensing non-constant parameters into easily digested sections can negatively influence your data visualization and can result in a negative bias of oversimplification.
A wonderful example is plotting accounting metrics in ‘months’ rather than weeks (where every third month is often considered a 5 week month at either the beginning or end of a fiscal quarter. Doing so can overvalue certain datapoints when higher resolution of your axis can show completely different data trends.
The below image shows data plotted from the exact same source set, whereby the resolution of the x-axis is varied. There are three different magnitudes of growth (slope of trendline), which could drastically impact forecast metrics when looked at on a micro-scale given that “Month 3” is the 5-week month. When plotted day-by-day, no growth in the randomized data set is found. When plotted week-by-week, the data set shows a negative trend even though the ending week is the highest recorded. And when plotted month-by-month the trendline shows growth, albeit this is unsurprising given Month 3’s extra weight
Sorry, the comment form is closed at this time.